An Alternative Goodness-of-fit Test for Normality with Unknown Parameters Thesis

thesis or dissertation chair

fiu authors

  • Shi, Weiling

abstract

  • Goodness-of-fit tests have been studied by many researchers. Among them, an alternative statistical test for uniformity was proposed by Chen and Ye (2009). The test was used by Xiong (2010) to test normality for the case that both location parameter and scale parameter of the normal distribution are known. The purpose of the present thesis is to extend the result to the case that the parameters are unknown. A table for the critical values of the test statistic is obtained using Monte Carlo simulation. The performance of the proposed test is compared with the Shapiro-Wilk test and the Kolmogorov-Smirnov test. Monte-Carlo simulation results show that proposed test performs better than the Kolmogorov-Smirnov test in many cases. The Shapiro Wilk test is still the most powerful test although in some cases the test proposed in the present research performs better.

publication date

  • November 14, 2014

keywords

  • G test
  • Goodness-of-fit test for normality
  • Monte Carlo Simulation

Digital Object Identifier (DOI)