Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin Article

Kim, DH, Lees, WJ, Kempsell, KE et al. (1996). Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin . 35(15), 4923-4928. 10.1021/bi952937w



cited authors

  • Kim, DH; Lees, WJ; Kempsell, KE; Lane, WS; Duncan, K; Walsh, CT

fiu authors

abstract

  • The antibiotic fosfomycin inhibits bacterial cell wall biosynthesis by inactivation of UDP-GlcNAc enolpyruvyl transferase (MurA). Prior work has established that Cys115 of Escherichia coli and Enterobacter cloacae MurA is the active site nucleophile alkylated by fosfomycin and implicated this residue in the formation of a covalent phospholactyl-enzyme adduct derived from the substrate, phosphoenolpyruvate (PEP). On the basis of sequencing information from a putative MurA homolog from Mycobacterium tuberculosis, we generated a C115D mutant of E. coli MurA that was highly active but fully resistant to time-dependent inhibition by fosfomycin. Fosfomycin still bound to the active site of C115D MurA, as established by the observed reversible competitive inhibition vs PEP. In contrast to the broad pH-independent behavior of wild-type (WT) MurA, C115D mutant activity titrated across the pH range examined (pH 5.5-9) with an apparent pKa ∼6, with kcatC115D ranging from ∼10kcatWT at pH 5.5 to <0.1kcatWT at pH 9.0. Km(PEP)C115D was relatively constant in the pH range examined and increased ∼100-fold relative to Km(PEP)WT. A fosfomycin-resistant C115E mutant with ∼1% activity of the C115D mutant was found to follow a pH dependence similar to that observed for C115D MurA. The contrasting pH dependences of WT and C115D MurA were also observed in the reaction with the pseudosubstrate, (Z)-3-fluorophosphoenolpyruvate, strongly suggesting a role for Cys/Asp115 as the general acid in the protonation of C-3 of PEP during MurA-catalyzed enol ether transfer. The difference in nucleophilicity between the carboxylate side chains of Asp115 and Glu115 and the thiolate group of Cys115 suggests that covalent enzyme adduct formation is not required for catalytic turnover and, furthermore, provides a chemical rationale for the resistance of the C115D and C115E mutants to fosfomycin inactivation.

publication date

  • April 16, 1996

Digital Object Identifier (DOI)

start page

  • 4923

end page

  • 4928

volume

  • 35

issue

  • 15