Contrasting single-trial ERPs between experimental manipulations: Improving differentiability by blind source separation Article

cited authors

  • Tang, AC; Sutherland, MT; Wang, Y

fiu authors

abstract

  • Contrasting event-related potentials (ERPs) generated under different experimental conditions and inferring differential brain responses is widely practiced in cognitive neuroscience research. Traditionally, these contrasts and subsequent inferences have proceeded directly from ERPs measured at the scalp. For certain tasks, it is not unusual that ERPs from a subset of channels are given particular emphasis in data analysis, such as the channels displaying the maximum peak amplitude in regions of interest ("best sensors") or channels showing the largest averaged ERP waveform differences. With the aid of a blind source separation (BSS) algorithm, second-order blind identification (SOBI), which has been recently validated for its ability to recover correlated neuronal sources, we show that single-trial ERPs from previously validated neuronal sources were more distinguishable among different experimental manipulations than the single-trial ERPs measured at the comparable "best sensors". This suggests that by using validated SOBI-recovered neuronal sources, ERP researchers can improve the ability to detect differences in neuronal responses induced by experimental manipulations. Critically, our observations were made at the level of single trials, as opposed to the averaged ERP. Therefore, our conclusions are particularly relevant to phenomena involving trial-to-trial changes in brain activation, for example, rapid induction of brain plasticity and perceptual learning, as well as to the development of brain-computer interfaces. Similar advantages would also apply to analogous situations with magnetoencephalography (MEG). © 2005 Elsevier Inc. All rights reserved.

publication date

  • January 1, 2006

Digital Object Identifier (DOI)

start page

  • 335

volume

  • 29