Gender Verification in Competitive Sports Article

Simpson, JL, Ljungqvist, A, de la Chapelle, A et al. (1993). Gender Verification in Competitive Sports . 16(5), 305-315. 10.2165/00007256-199316050-00002

cited authors

  • Simpson, JL; Ljungqvist, A; de la Chapelle, A; Ferguson-Smith, MA; Genel, M; Carlson, AS; Ehrhardt, AA; Ferris, E

fiu authors


  • The possibility that men might masquerade as women and be unfair competitors in women’s sports is accepted as outrageous by athletes and the public alike. Since the 1930s, media reports have fuelled claims that individuals who once competed as female athletes subsequently appeared to be men. In most of these cases there was probably ambiguity of the external genitalia, possibly as a result of male pseudohermaphroditism. Nonetheless, beginning at the Rome Olympic Games in 1960, the International Amateur Athletics Federation (IAAF) began establishing rules of eli-gibility for women athletes. Initially, physical examination was used as a method for gender verification, but this plan was widely resented. Thus, sex chromatin testing (buccal smear) was introduced at the Mexico City Olympic Games in 1968. The principle was that genetic females (46,XX) show a single X-chromatic mass, whereas males (46,XY) do not. Unfortunately, sex chromatin analysis fell out of common diagnostic use by geneticists shortly after the International Olympic Committee (IOC) began its implementation for gender verification. The lack of laboratories routinely performing the test aggravated the problem of errors in interpretation by inexperienced workers, yielding false-positive and false-negative results. However, an even greater problem is that there exist phenotypic females with male sex chromatin patterns (e.g. androgen insensitivity, XY gonadal dysgenesis). These individuals have no athletic advantage as a result of their congenital abnormality and reasonably should not be excluded from competition. That is, only the chromosomal (genetic) sex is analysed by sex chromatin testing, not the anatomical or psychosocial status. For all the above reasons sex chromatin testing unfairly excludes many athletes. Although the IOC offered follow-up physical examinations that could have restored eligibility for those ’failing’ sex chromatin tests, most affected athletes seemed to prefer to ’retire’. All these problems remain with the current laboratory based gender verification test, polymerase chain reaction based testing of the SRY gene, the main candidate for male sex determination. Thus, this ’advance’ in fact still fails to address the fundamental inequities of laboratory based gender verification tests. The IAAF considered the issue in 1991 and 1992, and concluded that gender verification testing was not needed. This was thought to be especially true because of the current use of urine testing to exclude doping: voiding is observed by an official in order to verify that a sample from a given athlete has actually come from his or her urethra. That males could masquerade as females in these circumstances seems extraordinarily unlikely. Screening for gender is no longer undertaken at IAAF competitions. © 1993, Adis International Limited. All rights reserved.

publication date

  • January 1, 1993

Digital Object Identifier (DOI)

start page

  • 305

end page

  • 315


  • 16


  • 5