Seismic performance of concrete-filled FRP tube columns for bridge substructure Article

cited authors

  • Zhu, Z; Ahmad, I; Mirmiran, A

fiu authors


  • A set of column-footing subassemblies were prepared to investigate construction feasibility and seismic performance of structural joints for concrete-filled fiber reinforced polymer (FRP) tubes (CFFT) as bridge substructure. Based on the common practices of the precast industry and previous research on CFFT, the test matrix included a control reinforced concrete (RC) column and three CFFT columns, all with similar RC footings. The three CFFT columns included a cast-in-place CFFT column with starter bars, a precast CFFT column with grouted starter bars, and a precast CFFT column with unbonded posttensioned rods. The columns were subjected to a constant axial load and a pseudostatic lateral load. All proposed joints proved feasible in construction and robust under extreme load conditions. FRP tube, when secured properly in the footing, showed great influence on the seismic performance of the column by providing both longitudinal reinforcement and hoop confinement to the core concrete. The CFFT columns exhibited significant improvement over traditional RC columns in both ultimate strength and ductility. The study also showed that practices of the precast concrete industry can be easily and effectively implemented for the CFFT column construction. © 2006 ASCE.

publication date

  • May 1, 2006

start page

  • 359

end page

  • 370


  • 11


  • 3